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Meiotic synapsis and recombination between homologs permits the
formation of cross-overs that are essential for generating chromo-
somally balanced sperm and eggs. In mammals, surveillance mech-
anisms eliminate meiotic cells with defective synapsis, thereby
minimizing transmission of aneuploidy. One such surveillance
mechanism is meiotic silencing, the inactivation of genes located
on asynapsed chromosomes, via ATR-dependent serine-139 phos-
phorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity
requires direct interaction with an ATR activation domain (AAD)-
containing partner. However, which partner facilitates the meiotic
silencing properties of ATR is unknown. Focusing on the best-
characterized example of meiotic silencing, meiotic sex chromosome
inactivation, we reveal this AAD-containing partner to be the DNA
damage and checkpoint protein TOPBP1. Conditional TOPBP1 dele-
tion during pachynema causes germ cell elimination associated with
defective X chromosome gene silencing and sex chromosome con-
densation. TOPBP1 is essential for localization to the X chromosome
of silencing “sensors,” including BRCA1, and effectors, including
ATR, γH2AFX, and canonical repressive histone marks. We present
evidence that persistent DNA double-strand breaks act as silencing
initiation sites. Our study identifies TOPBP1 as a critical factor in
meiotic sex chromosome silencing.
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Meiosis is the process by which haploid gametes are gener-
ated from diploid germ cells (1, 2). It comprises a single

phase of DNA replication followed by two successive cell divi-
sions. The first division is reductional, separating homologous
chromosomes, whereas the second is equational, segregating sister
chromatids. Before the first meiotic division, during prophase I,
homologous chromosomes synapse and recombine. These pro-
cesses together result in the formation of cross-overs, which permit
accurate chromosome segregation and generate genetic diversity
in offspring.
At early pachynema in male mammals, homologous autosomes

are fully synapsed. In contrast, the X and Y chromosomes synapse
only at a region of limited sequence homology, the pseudoauto-
somal region (PAR) (3) (Fig. S1A). The remaining, asynapsed
chromosome regions undergo meiotic sex chromosome inactivation
(MSCI), resulting in silencing of XY genes and formation of the sex
body (4–7) (Fig. S1A). MSCI is essential for spermatogenesis (8),
and aberrations in this process contribute to infertility in sex
chromosome aneuploid models, interspecific hybrids, and targeted
mutants defective in synapsis or recombination (9–12).
Although a hallmark of spermatocytes, silencing of asynapsed

chromosomes is confined neither to the X and Y chromosomes nor
to males. Any chromosome region asynapsed in males or females is
inactivated (13, 14) by a process referred to as meiotic silencing
(15). Meiotic silencing is suggested to restrict double-strand break
(DSB) formation (7), prevent nonhomologous recombination (4, 6,
15), and enable DSB repair (16) at sites of asynapsis. It may also
serve a checkpoint function to eliminate germ cells with asynapsed

chromosomes, thereby preventing aneuploidy in progeny (10). Fi-
nally, in males, MSCI may shield the asynapsed XY chromosome
regions from a synapsis checkpoint (17).
Meiotic silencing involves multiple DNA damage response

(DDR) proteins, which function in two key steps. First, asynapsis is
detected by “sensors,” which localize to the axial elements (AEs).
Subsequently, asynapsis signaling is transmitted to “effectors,”
which reside in the associated chromatin loops and cause long-
range gene silencing. Based on their localization to the inactive
XY bivalent, many potential sensors and effectors have been
identified (4–6, 15, 18). Among these are the sensors SYCP3 (19),
HORMAD1 (20), HORMAD2 (21), and BRCA1 (22), and the
effectors MDC1 (23) and histone H2AFX (24). A critical link be-
tween sensors and effectors is provided by the DNA damage kinase
ATR (25). SYCP3, HORMAD1, HORMAD2, and BRCA1 first
recruit ATR to asynapsed AEs. Subsequently, ATR, facilitated by
MDC1, translocates along chromatin loops, effecting gene silencing
via phosphorylation of H2AFX at serine 139 (γH2AFX).
To fulfill its DNA repair and checkpoint functions, ATR must

first be activated by proteins harboring an ATR activation domain
(AAD). Two AAD-containing proteins, ETAA1 (26–29) and
TOPBP1 (30, 31), act via independent pathways to activate ATR
during mitosis (32–37). In contrast, the identity of the AAD-
containing protein that activates ATR to initiate meiotic silenc-
ing is not known. ETAA1 expression during meiosis has not been
examined. TOPBP1 is observed on the XY bivalent during
pachynema (38, 39). However, the role of TOPBP1 in MSCI is
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unclear because mice carrying homozygous Topbp1 deletions or
AAD point mutations die during early embryogenesis (40–42).
By using a conditional deletion strategy, we now identify

TOPBP1 as the ATR partner in meiotic silencing. We find that
TOPBP1 directs assembly of multiple sensors and effectors at
the XY pair. Thus, in addition to its roles in DNA damage repair
and checkpoint signaling, TOPBP1 is an epigenetic regulator of
sex chromosome expression in the mammalian germ line.

Results
To assess potential roles of Topbp1 and Etaa1 in MSCI, we studied
their RNA expression and immunolocalization during spermato-
genesis. We first examined RNA-sequencing (RNA-seq) datasets
from isolated mouse spermatogonia, spermatocytes, and sperma-
tids (43). The expression profile of Topbp1 was similar to that of
established MSCI effectors Atr, Mdc1, and H2afx, with transcript
levels highest in spermatocytes (Fig. S1B). In contrast, Etaa1 ex-
pression was relatively low in all germ cell subtypes and was de-
creased in spermatocytes relative to spermatogonia (Fig. S1B). By
using combined antibody staining for TOPBP1 and SYCP3 on
spermatocyte spreads, we confirmed previous reports that TOPBP1
localizes to the XY bivalent and is absent at the PAR (38, 39) (Fig.
S1C; legend provides quantification). We also found that the dy-
namics of sex chromosome TOPBP1 localization matched that of
ATR (Fig. S1C). TOPBP1 and ATR colocalized on the asynapsed
regions of the XY pair during early, mid-, and late pachynema
before disappearing at diplonema. In contrast, no localization of
ETAA1 to the XY pair was observed (Fig. S1D). TOPBP1 was
therefore a superior candidate to ETAA1 for regulating MSCI.
To determine whether TOPBP1 is required for XY silencing, we

generated male mice carrying one Topbp1 floxed and one Topbp1
null allele (Topbp1flox/−) (44), together with an Ngn3 Cre transgene
that drives Cre recombinase expression in germ cells from post-
natal day (P) 7 (breeding scheme presented in Materials and
Methods) (45, 46). P42 testis weights in resulting Topbp1flox/− Ngn3
Cre males [hereafter Topbp1 conditional KO (cKO)] were reduced
fivefold relative to those in Topbp1flox/+Ngn3 Cre males (hereafter
control; Fig. 1A), whereas body weights were similar between these
genotypes (Fig. S1E). TOPBP1 protein expression was markedly
lower in Topbp1 cKO than in control testes (Fig. 1B). Topbp1 cKO
seminiferous tubules exhibited a deficiency of spermatogonia and
spermatocytes, and spermatids were rarely seen (Fig. 1C). Germ
cell elimination in MSCI-deficient mutants occurs at mid-
pachynema, or stage IV of the seminiferous cycle (47). As accurate
tubule staging requires the presence of spermatogonia, which, in
our model, were present in low numbers, we used an alternative
approach to determine whether spermatocytes deficient in TOPBP1
were eliminated at midpachynema. TOPBP1 XY immunolocaliza-
tion was compared between Topbp1 cKO spermatocytes at early
and late pachynema. At early pachynema, 60% of Topbp1 cKO
spermatocytes showed complete or partial loss of TOPBP1 from the
XY bivalent, whereas the remaining 40% exhibited grossly un-
affected TOPBP1 localization (Fig. 1D). However, at late pachy-
nema, 100% of Topbp1 cKO spermatocytes showed normal
TOPBP1 XY localization (Fig. S1F). Spermatocytes exhibiting
complete or partial loss of XY-associated TOPBP1 are therefore
eliminated during midpachynema. As noted previously (8), we also
observed in Topbp1 cKO males loss of unaffected germ cells as a
result of a bystander effect (SI Results).
We next used immunofluorescence to investigate relation-

ships between TOPBP1 and meiotic silencing sensors SYCP3,
HORMAD1, and HORMAD2 in early pachytene (EP) Topbp1
cKO spermatocytes. We focused on cells with normal autosomal
synapsis because asynapsed autosomes can indirectly disrupt MSCI
by titrating silencing factors from the XY bivalent (9). Inclusion of
an antibody to TOPBP1 allowed us to determine the localization of
each sensor in cells with partial TOPBP1 loss (see Figs. 1–5), as
well as in cells with complete TOPBP1 loss (see Figs. S1–S7).

Accumulation of SYCP3 (Fig. S2A), HORMAD1 (Fig. S2A), and
HORMAD2 (Fig. S2B) to XY AEs was unaffected by TOPBP1
depletion. These findings demonstrate that TOPBP1 lies down-
stream of SYCP3, HORMAD1, and HORMAD2 in the meiotic
silencing pathway.
SYCP3 and HORMAD2 also label asynapsed autosomes. This

localization pattern was unaffected in Topbp1 cKO cells. We
therefore used SYCP3/HORMAD2 immunostaining to determine
whether TOPBP1 regulates synapsis. Addition of a TOPBP1 an-
tibody again allowed us to compare phenotypes in cells with dif-
ferent extents of XY-associated TOPBP1 depletion. Normal
synapsis occurred in 95% of Topbp1 cKO cells with unaffected XY
TOPBP1 localization, a frequency similar to that observed in
controls (91%; Fig. S3). In contrast, normal synapsis was observed
in only 46% and 52% of Topbp1 cKO cells with partial and com-
plete XY-associated TOPBP1 loss, respectively (Fig. S3). In the
remaining cells, asynapsis affected the XY pair or the autosomes.
TOPBP1 is therefore required for autosomal and XY synapsis.
Next, we examined XY localization of silencing factors ATR

and BRCA1. Interestingly, ATR localization to the XY pair was
compromised in Topbp1 cKO cells. We observed a strict corre-
spondence between TOPBP1 and ATR localization patterns: in
cells with partial TOPBP1 depletion, regions of the XY AEs
positive for TOPBP1 were positive for ATR, whereas regions
lacking TOPBP1 lacked ATR (Fig. 2A). In cells with complete
TOPBP1 loss, ATR was undetectable (Fig. S2C). Similarly, in
TOPBP1-depleted cells, loading of BRCA1 to the XY bivalent
was deficient except at regions where presumptive TOPBP1 was
located (Fig. 2B and Fig. S2D; note that ATR acts as a TOPBP1
proxy in this experiment, as detailed in the legend to Fig. 2). XY
localization of RBBP8, a partner of TOPBP1 (48) and BRCA1
(49, 50), was also defective in TOPBP1-depleted cells (Fig. 2C
and Fig. S2E). Furthermore, serine-271 phosphorylation of
HORMAD2 (pHORMAD2Ser271), which is mediated by ATR (25),
was compromised in Topbp1 cKO cells (Fig. 2D and Fig. S2F),
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Fig. 1. TOPBP1 deletion causes germ cell loss. (A) Mean P42 testis weights ±
SEM: 70.49 ± 4.60 mg for control and 14.40 ± 0.75 mg for Topbp1 cKO. Each
symbol represents the mean testis weight from one male. Significance was
determined by unpaired t test. (B) Western blot for TOPBP1 in control and
Topbp1 cKO testes. Tubulin is used as loading control. (C) Periodic acid-
Schiff–stained seminiferous tubule sections showing normal spermatogen-
esis in control and loss of spermatogonia and spermatocytes in Topbp1 cKO
males. A, apoptotic spermatocyte; SC, spermatocyte; SG, spermatogonia.
(Inset) Presence of spermatids in some tubules from Topbp1 cKO males.
(D) Topbp1 cKO XY bivalents at early pachynema showing complete TOPBP1 loss
(Left), partial TOPBP1 loss (defined as regions of TOPBP1 discontinuity on the
asynapsed XY axes; Middle), and unaffected TOPBP1 localization (Right; n =
3 males, n = 186 cells). (Scale bars, C, 50 μm; D, 5 μm.)
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consistent with TOPBP1 acting as a cofactor of ATR in silencing.
TOPBP1 is therefore essential for region-by-region assembly of
ATR, BRCA1, RBBP8, and pHORMAD2Ser271 at asynapsed
XY axes.
We subsequently assessed XY localization of silencing effectors

MDC1 and γH2AFX. In control EP cells, both factors formed a
cloud marking the XY chromatin loops (Fig. 3 A and B). However,
in Topbp1 cKO cells, formation of MDC1 and γH2AFX clouds was
impaired. Chromatin loops arising from TOPBP1-positive AE
stretches were positive for MDC1 and γH2AFX, whereas those
arising from TOPBP1-deficient AE stretches were not (Fig. 3 A
and B). XY bivalents without TOPBP1 were devoid of both ef-
fectors (Fig. S4). These findings show that TOPBP1 connects the
sensor and effector arms of the silencing response. Furthermore,
they demonstrate that spreading of silencing effectors into chro-
matin loops initiates from multiple independent sites along the
length of asynapsed AEs.
Following acquisition of MDC1 and γH2AFX, XY chromatin

undergoes further remodeling involving removal of histone H2A
lysine-119 monoubiquitination (H2AK119ub) by USP7 (51, 52),
acquisition of histone H3 lysine-9 trimethylation (H3K9me3) (53),

and conjugation of unidentified targets with polyubiquitination
(polyub) (54) and sumoylation (SUMO-1) (55, 56). We performed
immunostaining for USP7, H3K9me3, polyub, and SUMO-1 to
determine which, if any, of these pathways is TOPBP1-dependent.
In Topbp1 cKO cells, all four factors were undetectable, even at
regions where TOPBP1 (or its proxy ATR) was preserved (Fig. 3
C–F). Absence of these components at TOPBP1-positive locationsX
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Fig. 2. TOPBP1 regulates localization of silencing sensors at XY AEs. (A–D)
Immunostaining of meiotic chromosome spreads at early pachynema for
SYCP3 (gray), TOPBP1 (green), and indicated silencing sensors (magenta) in
control (Left; n = 2 males, n = 50 cells for each silencing sensor) and Topbp1
cKO spermatocytes with partial TOPBP1 loss (Right; n = 2 males, n = 55, 52, 60,
and 45 cells for ATR, BRCA1, RBBP8, and pHORMAD2Ser271, respectively). Ar-
rowheads indicate regions of XY AEs that are depleted for TOPBP1. Colocali-
zation of green and magenta appears in white. (B–D) ATR is used as
TOPBP1 proxy, as TOPBP1, BRCA1, RBBP8, and pHORMAD2Ser271 antibodies are
raised in the same species and therefore cannot be used in combined immu-
nofluorescence. (Scale bars, 5 μm.)
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Fig. 3. TOPBP1 regulates localization of silencing effectors at XY chromatin
loops. (A–F) Immunostaining of meiotic chromosome spreads at early pachy-
nema using SYCP3 (gray), TOPBP1 (green), and indicated silencing effectors
(magenta) in control (Left; n = 2 males, n = 50 cells for each silencing effector)
and Topbp1 cKO spermatocytes with partial TOPBP1 loss (Right; n = 2 males,
n = 51, 53, 50, 47, 50, and 59 cells for MDC1, γH2AFX, USP7, H3K9me3, polyub,
and SUMO-1, respectively). Arrowheads indicate regions of XY AEs that are
depleted for TOPBP1. Colocalization of green and magenta appears in white.
In C, D, and F, ATR is used as TOPBP1 proxy because TOPBP1, USP7, H3K9me3,
and SUMO-1 antibodies are raised in the same species and therefore cannot be
used in combined immunofluorescence. (Scale bars, 5 μm.)
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may be the result of antibody inefficiencies, or because high levels
of TOPBP1 are required for successful recruitment of these com-
ponents. Either way, TOPBP1 lies upstream of USP7, H3K9me3,
polyub, and SUMO-1 in the XY chromatin-remodeling pathways.
At early pachynema, the asynapsed X chromosome contains

multiple persistent meiotic DSBs. These DSBs may act as initia-
tion sites for silencing factor spreading (15, 57). Before in-
vestigating the potential relationship between DSBs and silencing,
we first assessed whether global DSB abundance was perturbed in
Topbp1 cKO males. Leptotene focus counts for the DSB markers
RPA subunit 2 (RPA2; Fig. S5A) and RAD51 (Fig. S5B) were
similar to those in controls, indicating that DSB numbers in
Topbp1 cKO males were grossly unaffected. Focusing on EP
Topbp1 cKO cells with partial TOPBP1 loss, we then examined
spatial proximity between the TOPBP1 proxy ATR and RPA2 foci
along the X chromosome AE (Fig. S6). We noticed a striking
colocalization between these DDR factors: 98% of AE stretches
that were positive for ATR contained RPA2 foci, whereas only
3% of AE stretches that were negative for ATR contained RPA2
foci. Conversely, 99% of all X chromosome RPA2 foci resided
within AE stretches that were positive for ATR. These findings
support the hypothesis that DNA damage is the initiating lesion
for meiotic silencing.
During MSCI, the X and Y chromosomes condense to form the

sex body, in which their centromeres come into close proximity.
Given the defects in localization of silencing factors to the XY pair
in Topbp1 cKO males, we suspected that sex body formation in
these mice would be perturbed. To test this possibility, we used an
established method (23) to compare the mean X-to-Y centromere
distance between EP Topbp1 cKO cells with differing extents of
TOPBP1 depletion (Fig. 4). Topbp1 cKO cells with unaffected
TOPBP1 localization exhibited a mean X-to-Y centromere dis-
tance indistinguishable from that in controls, suggesting that they
had achieved sex chromosome condensation. However, Topbp1
cKO cells with complete TOPBP1 loss had a mean X-to-Y cen-
tromere distance threefold higher than controls. Interestingly,
the mean X-to-Y centromere distance in Topbp1 cKO cells with
partial TOPBP1 loss was similar to that in cells with complete
TOPBP1 loss. TOPBP1 colocalization to the XY bivalent must

therefore exceed a threshold to initiate sex chromosome
condensation.
Finally, we used RNA FISH to examine whether TOPBP1 is

required for silencing of X genes at pachynema. We examined in
Topbp1 cKO and controls expression of genes located near the
centromere (Utx), the center (Zfx), and the PAR (Scml2) of
the X chromosome (Fig. 5A). Following RNA FISH, we per-
formed immunostaining for HORMAD2 and γH2AFX. XY
HORMAD2 localization, which is unaffected by TOPBP1 de-
pletion (Fig. S2B), was used to identify pachytene cells by a
method described previously (58, 59). Among the Topbp1 cKO
pachytene population, cells with TOPBP1 depletion were iden-
tified by virtue of having defective XY γH2AFX acquisition. We
observed silencing of Utx, Zfx, and Scml2 in almost all pachytene
cells from control males (Fig. 5). However, expression of all
three X genes persisted in TOPBP1-depleted pachytene cells
(Fig. 5). Notably, the proportion of TOPBP1-deficient pachy-
tene cells misexpressing Utx, Zfx, and Scml2 was equivalent to
that observed in an established MSCI mutant, the H2afx-null
male (60) (Fig. 5). We conclude that meiotic X chromosome
silencing requires TOPBP1.
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Discussion
Aside from its well-established roles in DNA replication, DNA
repair, and checkpoint control, TOPBP1 can interact with
chromatin-remodeling complexes and transcription factors to in-
fluence gene expression (61). Here we show that TOPBP1 is also
critical for meiotic silencing (Fig. S7), thereby supporting a role
for this protein in epigenetic regulation. Although, in other con-
texts, TOPBP1 has functions that are independent of ATR (61),
the meiotic silencing defects in TOPBP1-deficient males resemble
those in ATR-deficient males (25). In both models, localization of
early sensor components SYCP3, HORMAD1, and HORMAD2
to the XY pair is unaffected, whereas subsequent acquisition of
BRCA1 and of the ATR-phosphortarget pHORMAD2Ser271 is
perturbed. Furthermore, the same downstream effector pathways
that enforce X-gene silencing are disrupted. Based on these
phenotypic similarities, we suggest that TOPBP1 imparts its si-
lencing functions principally as an ATR cofactor.
Notably, partial TOPBP1 depletion was sufficient to abolish sex

chromosome condensation and silencing of X-linked genes. This
finding suggests that MSCI is sensitive to the levels of silencing
components. In support of this hypothesis, MSCI is perturbed by
an increasing dose of asynapsed autosomes, which titrate silencing
factors from the XY bivalent (9, 62). TOPBP1, like other silencing
effectors ATR (63) and H2AFX (64), exhibits higher expression in
testis than in somatic tissues (65). We suggest that elevated levels
of silencing effectors TOPBP1, ATR, and H2AFX within sper-
matocytes reflect the unique requirement of these cells to in-
activate hundreds of X and Y chromosome genes.
The existence in our Topbp1 cKO mutant of pachytene cells

with partial TOPBP1 depletion was fortuitous, as it allowed us to
observe silencing initiation sites along the X chromosome AE.
Two resulting observations were noteworthy. First, spreading of
silencing factors initiates from multiple sites along the X chro-
mosome axis. This mechanism contrasts with that observed during
female somatic X chromosome inactivation, in which silencing
components spread from a single site termed the X inactivation
center (66). Second, on the meiotic X chromosome, silencing
initiation sites coincide with DSB sites. Despite involving multiple
DDR factors, meiotic silencing was originally thought to be DSB-
independent because it also occurs in spermatocytes lacking the
meiotic DSB-inducing enzyme SPO11 (64, 67, 68). However,
DNA damage foci, the origin of which is unknown, have since
been observed in Spo11-null pachytene spermatocytes, where they
colocalize with silencing domains (57). Our findings build on these
observations and provide compelling evidence that DSBs are
meiotic silencing initiation sites.
We also show that TOPBP1 is essential for completion of au-

tosomal and XY synapsis. The asynapsis phenotype in Topbp1
cKO males could result from defective recombination, synapto-
nemal complex (SC) formation, or both. Although DSB abun-
dance is unaffected in Topbp1 cKO males at leptonema, we were

unable to establish the extent of TOPBP1 depletion in individual
spermatocytes at this stage. Further investigation of the role of
TOPBP1 in recombination will therefore require a superior Cre
driver. We find that TOPBP1 is required for serine-271 phos-
phorylation of the SC component HORMAD2. TOPBP1 may
facilitate phosphorylation of other known ATR SC targets, as well
as SC components with (S/T)Q cluster domains (69). Finally, we
note that localization of ATR to the XY pair during meiosis is
TOPBP1-dependent. This observation is intriguing, because as-
sembly of ATR at sites of DNA damage during mitosis is
TOPBP1-independent (70). The extent to which interrelationships
between TOPBP1 and ATR differ in meiosis and mitosis is
therefore an interesting avenue for future study.

Materials and Methods
Mice. All mice were maintained according to UK Home Office Regulations at
the National Institute for Medical Research and the Francis Crick Institute Mill
Hill laboratory. To generate Topbp1flox/− Ngn3 Cre males, we first mated
conditional Topbp1flox/+ females (44) to males carrying the Ngn3 Cre trans-
gene (45, 46). In the germ line of resulting Topbp1flox/+ Ngn3 Cre sons, Cre
recombinase converts Topbp1flox alleles into Topbp1− (i.e., null) alleles.
Mating these males to Topbp1flox/flox females generates Topbp1flox/− Ngn3
Cre sons and Topbp1flox/+ Ngn3 Cre control brothers. Topbp1flox and Ngn3
Cre were maintained on a C57BL/6 background. H2afx−/− males (60) were
maintained on an MF1 background.

RNA FISH, Immunofluorescence, andWestern Blotting.RNAFISHdigoxigenin-labeled
probes were prepared from BAC DNA (from CHORI, Scml2, RP24-204O18; Zfx,
RP24-204018; Utx, gift from Mike Mitchell, University Aix-Marseille, Marseille,
France) as described previously (71). Immunofluorescence experiments were car-
ried out as described previously (13) (SI Materials and Methods lists antibodies).
Western blotting was carried out as described previously (72) with TOPBP1 and
tubulin (T9026; Sigma) antibodies used at 1:1,000 and 1:14,000, respectively.

Microscopy. Imaging was performed by using an Olympus IX70 inverted
microscope with a 100-Wmercury arc lamp. An Olympus UPlanApo 100×/1.35
N.A. oil-immersion objective was used for meiotic chromosome spread and
RNA FISH imaging. An Olympus UPlanApo 40×/0.75 N.A. objective was used
for imaging testis sections. A DeltaVision RT computer-assisted Photometrics
CoolSnap HQ CCD camera with an ICX285 Progressive scan CCD image sensor
was used for capturing images. Fiji software was used to process 8- or 16-bit
(512 × 512 or 1,024 × 1,024 pixels) captured images.
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